显示数学公式
此頁面已过时。 |
The Math extension uses a subset of TeX markup, including some extensions from LaTeX and AMS-LaTeX, to display mathematical formulas. It either generates SVG, MathML markup, or uses MathJax to render math on the client side, depending on user preferences and the complexity of the expression.
MathML and MathJax are planned to be used more in the future, with the SVG images becoming deprecated.
准确地说,MediaWiki通过Texvc过滤标记,结果传回到TeX的命令用于事实上的渲染。因此,只有完整TeX语言的一小部分是支持的,参见下方以了解详情。
语法
传统的数学标记在XML形式的标签math内:<math> ... </math>
。旧版的编辑工具栏有此链接,可以通过自定义WikiEditor工具栏来添加类似地按钮。图标是像这样的:和。
然而,也可以使用解析器函数#tag来显示公式: {{#tag:math|...}}
。这个方法更加强大,因为解析器函数的参数会先展开,然后再解释为TeX代码。所以这里可以包含模板参数、变量、其他解析器函数、其他模板等。然而,请注意TeX语法内如果遇到双重花括号,则必须用空格隔开,以免被误解析为模板调用。另外,如果要在公式里显示“|”管道符号,需要用{{!}}代替。
在TeX中,就像在HTML中,额外的空格和新行会被忽略。
渲染
PNG图像的,可以用于视觉障碍或无法读图的读者,当文本被选中和复制时会被使用,默认为图像的维基源代码,不包括<math>
和</math>
。你可以通过清楚地为Template:Code2元素添加一个alt
属性来覆盖它。比如,<math alt="π的算术平方根">\sqrt{\pi}</math>
产生图像,其替换文本为“π的算术平方根”。
除了函数和操作符名称,只要是数学变量,字母都是斜体的,数字不是斜体。对于其他文本,像变量标签,如要避免渲染成像棉量那样的斜体,使用\text
、\mbox
或\mathrm
。你也可以通过\operatorname{...}
来定义新的函数。比如,<math>\text{abc}</math>
产生。也可用如下的寫法定義新函數名 \operatorname{...}
.
特殊字符
以下字符是保留字,和LaTeX下的含义相同,或者在所有字体下都不可用。
# $ % ^ & _ { } ~ \
如果需要显示这些保留字,就要在前面加上斜杠(\)。
<math>\# \$ \% \& \_ \{ \} </math>
→
其他拥有特殊名称:
<math> \hat{} \quad \tilde{} \quad \backslash </math>
→
<span id="TeX_and_HTML">
TeX和HTML
在介绍用于产生特殊字符的TeX标记前需要注意的是,就像这个比较表显示的那样,有时类似的结果可以在HTML中实现(参见特殊字符)。
TeX语法(强制PNG) | TeX渲染 | HTML语法 | HTML渲染 |
---|---|---|---|
<math>\alpha</math>
|
{{math|<var>α</var>}}
|
α | |
<math> f(x) = x^2\,</math>
|
{{math|''f''(<var>x</var>) {{=}} <var>x</var><sup>2</sup>}}
|
f(x) = x2 | |
<math>\sqrt{2}</math>
|
{{math|{{radical|2}}}}
|
√2 | |
<math>\sqrt{1-e^2}</math>
|
{{math|{{radical|1 − ''e''²}}}}
|
√1 − e² |
左侧的代码可以产生右侧的符号, 后者除‘=’外也可以直接放在维基源代码中.
语法 | 渲染 |
---|---|
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
∫ ∑ ∏ √ − ± &infty; ≈ ∝ {{=}} ≡ ≠ ≤ ≥ × ⋅ ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
∫ ∑ ∏ √ − ± ∞ ≈ ∝ = ≡ ≠ ≤ ≥ × ⋅ ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
該專案已經同時在HTML和TeX確定了,因為在某些情況下它們各自有不同的優勢。
HTML的好处
- HTML中的公式的行為更像常規文本。內聯 HTML 公式始終與 HTML 文字的其餘部分正確對齊,並且在某種程度上可以剪切和粘貼(如果使用MathJax呈現TeX,則這不是問題一旦,bug 32694修復,對齊對於 PNG 渲染來說應該不是問題。)
- 公式的背景和字體大小與HTML內容的其餘部分匹配(可以通過使用命令
\pagecolor
和\definecolor
修復TeX)和外觀遵循CSS和瀏覽器設置,而字體則方便地更改以説明您識別公式。 - 使用HTML代碼作為公式的頁面使用較少的數據進行傳輸,這對於互聯網連接速度較慢或有上限的使用者(例如,使用撥號或移動互聯網連接的使用者,這些使用者的速度很慢或數據上限)非常重要。
- 用戶端文本連結(也稱為腳本集)可以訪問帶有 HTML 代碼的公式排版。
- 使用數學範本輸入的公式的顯示可以通過修改所涉及的範本來方便地更改;此修改將影響所有相關公式,而無需任何手動干預。
- The HTML code, if entered diligently, will contain all semantic information to transform the equation back to TeX or any other code as needed. It can even contain differences TeX does not normally catch, e.g.
{{math|''i''}}
for the imaginary unit and{{math|<var>i</var>}}
for an arbitrary index variable. - 無論使用什麼設備來呈現公式,使用HTML代碼的公式將盡可能清晰地呈現,
- The formula’s background and font size match the rest of HTML contents (this can be fixed on TeX formulas by using the commands
\pagecolor
and\definecolor
) and the appearance respects CSS and browser settings while the typeface is conveniently altered to help you identify formulae.
- Formulae typeset with HTML code will be accessible to client-side script links (a.k.a. scriptlets).
- The display of a formula entered using mathematical templates can be conveniently altered by modifying the templates involved; this modification will affect all relevant formulae without any manual intervention.
- The HTML code, if entered diligently, will contain all semantic information to transform the equation back to TeX or any other code as needed. It can even contain differences TeX does not normally catch, e.g.
{{math|''i''}}
for the imaginary unit and{{math|<var>i</var>}}
for an arbitrary index variable.
- Formulae using HTML code will render as sharp as possible no matter what device is used to render them.
<span id="Pros_of_TeX">
TeX的好处
- TeX is semantically more precise than HTML.
- In TeX, "
<math>x</math>
" means "mathematical variable ", whereas in HTML "x
" is generic and somewhat ambiguous. - On the other hand, if you encode the same formula as "
{{math|<var>x</var>}}
", you get the same visual result x and no information is lost. This requires diligence and more typing that could make the formula harder to understand as you type it. However, since there are far more readers than editors, this effort is worth considering if no other rendering options are available (such as MathJax, which was requested on bug 31406 for use on Wikimedia wikis and is being implemented on Extension:Math as a new rendering option).
- In TeX, "
- One consequence of point 1 is that TeX code can be transformed into HTML, but not vice-versa.Template:Ref This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It is true that the current situation is not ideal, but that is not a good reason to drop information/contents. It is more a reason to help improve the situation.
- Another consequence of point 1 is that TeX can be converted to MathML (e.g. by MathJax) for browsers which support it, thus keeping its semantics and allowing the rendering to be better suited for the reader’s graphic device.
- TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers. It is easier to persuade them to contribute if they can write in TeX.
- TeX has been specifically designed for typesetting formulae, so input is easier and more natural if you are accustomed to it, and output is more aesthetically pleasing if you focus on a single formula rather than on the whole containing page.
- Once a formula is done correctly in TeX, it will render reliably, whereas the success of HTML formulae is somewhat dependent on browsers or versions of browsers. Another aspect of this dependency is fonts: the serif font used for rendering formulae is browser-dependent and it may be missing some important glyphs. While the browser generally capable to substitute a matching glyph from a different font family, it need not be the case for combined glyphs (compare ‘ a̅ ’ and ‘ a̅ ’).
- When writing in TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the software. This does not hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor’s intentions on a different browser.Template:Ref
- TeX formulae, by default, render larger and are usually more readable than HTML formulae and are not dependent on client-side browser resources, such as fonts, and so the results are more reliably WYSIWYG.
- While TeX does not assist you in finding HTML codes or Unicode values (which you can obtain by viewing the HTML source in your browser), cutting and pasting from a TeX PNG in Wikipedia into simple text will return the LaTeX source.
- In TeX, "
<math>x</math>
" means "mathematical variable ", whereas in HTML "x
" is generic and somewhat ambiguous.
- In TeX, "
- On the other hand, if you encode the same formula as "
{{math|<var>x</var>}}
", you get the same visual result x and no information is lost. This requires diligence and more typing that could make the formula harder to understand as you type it.
- On the other hand, if you encode the same formula as "
- One consequence of point 1 is that TeX code can be transformed into HTML, but not vice-versa (unless your wikitext follows the style of point 1.2). This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX.
- Another consequence of point 1 is that TeX can be converted to MathML (e.g. by MathJax) for browsers which support it, thus keeping its semantics and allowing the rendering to be better suited for the reader’s graphic device.
- TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers writing in English. It is easier to persuade them to contribute if they can write in TeX.
- TeX has been specifically designed for typesetting formulae, so input is easier and more natural if you are accustomed to it, and output is more aesthetically pleasing if you focus on a single formula rather than on the whole containing page.
- Once a formula is done correctly in TeX, it will render reliably, whereas the success of HTML formulae is somewhat dependent on browsers or versions of browsers. Another aspect of this dependency is fonts: the serif font used for rendering formulae is browser-dependent and it may be missing some important glyphs. While the browser generally capable to substitute a matching glyph from a different font family, it need not be the case for combined glyphs (compare ‘ a̅ ’ and ‘ a̅ ’).
- When writing in TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the software. This does not hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor’s intentions on a different browser.
- TeX formulae, by default, render larger and are usually more readable than HTML formulae and are not dependent on client-side browser resources, such as fonts, and so the results are more reliably WYSIWYG.
- While TeX does not assist you in finding HTML codes or Unicode values (which you can obtain by viewing the HTML source in your browser), cutting and pasting from a TeX PNG in Wikipedia into simple text will return the LaTeX source.
In some cases it may be the best choice to use neither TeX nor the html-substitutes, but instead the simple ASCII symbols of a standard keyboard (see below, for an example).
函数、符号和特殊字符
声调/变音符号
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
|
|
\check{a} \bar{a} \ddot{a} \dot{a}
|
标准函数
\sin a \cos b \tan c
|
|
\sec d \csc e \cot f
|
|
\arcsin h \arccos i \arctan j
|
|
\sinh k \cosh l \tanh m \coth n
|
|
\operatorname{sh}o\,\operatorname{ch}p\,\operatorname{th}q
|
|
\operatorname{arsinh}r\,\operatorname{arcosh}s\,\operatorname{artanh}t
|
|
\lim u \limsup v \liminf w \min x \max y
|
|
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g
|
|
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
|
模运算
s_k \equiv 0 \pmod{m}
|
|
a\,\bmod\,b
|
导数
\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}
|
集合
\forall \exists \empty \emptyset \varnothing
|
|
\in \ni \not\in \notin \not\ni \subset \subseteq \supset \supseteq
|
|
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
|
|
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
|
运算符
+ \oplus \bigoplus \pm \mp -
|
|
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
|
|
\star * / \div \frac{1}{2}
|
逻辑
\land (or \and) \wedge \bigwedge \bar{q} \to p
|
|
\lor \vee \bigvee \lnot \neg q \And
|
根
\sqrt{2} \sqrt[n]{x}
|
关系
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}
|
|
< \le \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
|
|
\lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox
|
几何符号
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
|
箭头
\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
|
|
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow (or \impliedby) \Longrightarrow (or \implies) \Longleftrightarrow (or \iff)
|
|
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
|
|
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
|
|
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
|
|
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
|
|
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
|
特殊
\And \eth \S \P \% \dagger \ddagger \ldots \cdots \colon
|
|
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
|
|
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
|
|
\ell \mho \Finv \Re \Im \wp \complement
|
|
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
|
未排序(新内容)
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
|
|
\square \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
|
|
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
|
|
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
|
|
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
|
|
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
|
|
\Vvdash \bumpeq \Bumpeq \eqsim \gtrdot
|
|
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
|
|
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \between \shortparallel \pitchfork
|
|
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
|
|
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
|
|
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
|
|
\subsetneq
|
|
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
|
|
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
|
|
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
|
|
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
|
|
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
|
|
\dashv \asymp \doteq \parallel
|
|
\ulcorner \urcorner \llcorner \lrcorner
|
|
\Coppa\coppa\Digamma\Koppa\koppa\Sampi\sampi\Stigma\stigma\varstigma
|
大型运算符
下标、上标、积分
功能 | 语法 | 效果 | |
---|---|---|---|
上标 | a^2 |
||
下标 | a_2 |
||
分组 | a^{2+2} |
||
a_{i,j} |
|||
结合上下标(不含/含水平分离) | x_2^3 |
||
{x_2}^3 |
|||
超乘方 | 10^{10^{8}} |
||
Preceding and/or Additional sub & super | _nP_k |
||
\sideset{_1^2}{_3^4}\prod_a^b |
|||
{}_1^2\!\Omega_3^4 |
|||
堆叠 | \overset{\alpha}{\omega} |
||
\underset{\alpha}{\omega} |
|||
\overset{\alpha}{\underset{\gamma}{\omega}} |
|||
\stackrel{\alpha}{\omega} |
|||
衍生作品 | x', y'', f', f'' |
||
x^\prime, y^{\prime\prime} |
|||
導數點 | \dot{x}, \ddot{x} |
||
底線、上橫線、向量 | \hat a \ \bar b \ \vec c |
||
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
|||
\overline{g h i} \ \underline{j k l} |
|||
\not 1 \ \cancel{123} |
|||
箭頭 | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
||
上括号 | \overbrace{ 1+2+\cdots+100 }^{\text{sum}\,=\,5050} |
||
下括号 | \underbrace{ a+b+\cdots+z }_{26\text{ terms}} |
||
求和 | \sum_{k=1}^N k^2 |
||
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
||
求积 | \prod_{i=1}^N x_i |
||
求积 (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
||
上积 | \coprod_{i=1}^N x_i |
||
上积 (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
||
极限 | \lim_{n \to \infty}x_n |
||
极限 (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
||
积分 | \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx |
||
积分(交替限制样式) | \int_{1}^{3}\frac{e^3/x}{x^2}\, dx |
||
积分(强制\textstyle ) |
\textstyle \int\limits_{-N}^{N} e^x\, dx |
||
积分 (force \textstyle , alternate limits style) |
\textstyle \int_{-N}^{N} e^x\, dx |
||
二重积分 | \iint\limits_D \, dx\,dy |
||
三重积分 | \iiint\limits_E \, dx\,dy\,dz |
||
四重积分 | \iiiint\limits_F \, dx\,dy\,dz\,dt |
||
线积分和路径积分 | \int_C x^3\, dx + 4y^2\, dy |
||
闭合线或路径积分 | \oint_C x^3\, dx + 4y^2\, dy |
||
交集 | \bigcap_1^n p |
||
并集 | \bigcup_1^k p |
分数、矩阵、多线
功能 | 语法 | 效果 |
---|---|---|
分数 | \frac{1}{2}=0.5
|
|
小型分数(使用"\textstyle") | \tfrac{1}{2} = 0.5
|
|
大型分数 | \dfrac{k}{k-1} = 0.5
|
|
大分子和小分子的混合物 | \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n
|
|
连分数 (注意格式的不同) | \cfrac{2}{ c + \cfrac{2}{ d + \cfrac{1}{2} } } = a \qquad \dfrac{2}{ c + \dfrac{2}{ d + \dfrac{1}{2} } } = a |
|
二项式系数 | \binom{n}{k}
|
|
小型(“文本样式”)二项式系数 | \tbinom{n}{k}
|
|
大型(“显示样式”)二项式系数 | \dbinom{n}{k}
|
|
矩阵 | \begin{matrix} x & y \\ z & v \end{matrix} |
|
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
||
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
||
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
||
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
||
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
||
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
||
数组 | \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0 \end{array} |
|
範例 | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
|
方程組 | \begin{cases} 3x + 5y + z &= 1 \\ 7x - 2y + 4z &= 2 \\ -6x + 3y + 2z &= 3 \end{cases} |
|
分解一個長表示式,以便在必要時將其換行 | <math>f(x) = \sum_{n=0}^\infty a_n x^n</math> <math>= a_0 + a_1x + a_2x^2 + \cdots</math> |
|
多行方程式 | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \end{align} |
|
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \end{alignat} |
||
聯立多行方程式 (left, center, right) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
|
\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
为大表达式加括号、线条等
功能 | 语法 | 效果 |
---|---|---|
不良 | ( \frac{1}{2} )
|
|
良好 | \left ( \frac{1}{2} \right )
|
你可以用 \left 和 \right 来显示不同的括号:
功能 | 语法 | 效果 |
---|---|---|
圆括号 | \left ( \frac{a}{b} \right )
|
|
方括号 | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
|
|
花括号 (note the backslash before the braces in the code) | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
|
|
尖括弧 | \left \langle \frac{a}{b} \right \rangle
|
|
豎線和雙豎線(注意:「豎線」用於呈現絕對值函數) | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
|
|
取整函數: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
|
|
斜杠和反斜杠 | \left / \frac{a}{b} \right \backslash
|
|
向上、向下和向上向下箭頭 | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
|
|
分隔符可以混合使用,只要都使用\left 和\right
|
\left [ 0,1 \right ) \left \langle \psi \right |
|
|
如果您不希望顯示分隔符,請使用 \left. 或 \right. :
|
\left . \frac{A}{B} \right \} \to X
|
|
分隔符的大小 | \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]
|
|
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
|
||
\big| \Big| \bigg| \Bigg| \dots \Bigg\| \bigg\| \Big\| \big\|
|
||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
|
||
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
|
||
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
|
||
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash
|
字母和字體
Texvc無法呈現任意Unicode字符。可以透過下表顯示可顯示的字元。 對於其他字元,例如西里爾字母,它們可以作為Unicode或HTML實體在運行文本中輸入,但無法在公式顯示。
希腊字母 | |
---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
|
|
\Eta \Theta \Iota \Kappa \Lambda \Mu
|
|
\Nu \Xi \Omicron \Pi \Rho \Sigma \Tau
|
|
\Upsilon \Phi \Chi \Psi \Omega
|
|
\alpha \beta \gamma \delta \epsilon \zeta
|
|
\eta \theta \iota \kappa \lambda \mu
|
|
\nu \xi \omicron \pi \rho \sigma \tau
|
|
\upsilon \phi \chi \psi \omega
|
|
\varepsilon \digamma \vartheta \varkappa
|
|
\varpi \varrho \varsigma \varphi
|
|
黑板粗體/字形 | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
|
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
|
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
|
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
|
\C \N \Q \R \Z
|
|
粗體(向量) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
|
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
|
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
|
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
|
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
|
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
|
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
|
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
|
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
|
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
|
粗體(希臘字母) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
|
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
|
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Omicron} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
|
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
|
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
|
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
|
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\omicron} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
|
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
|
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
|
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
|
斜體 | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
|
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
|
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
|
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
|
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
|
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
|
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
|
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
|
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
|
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
|
羅馬字體 | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
|
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
|
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
|
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
|
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
|
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
|
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
|
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
|
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
|
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
|
德文尖角體 | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
|
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
|
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
|
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
|
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
|
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
|
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
|
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
|
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
|
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
|
書法/字形 | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
|
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
|
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
|
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
|
希伯來字母 | |
\aleph \beth \gimel \daleth
|
功能 | 语法 | 效果 |
---|---|---|
非斜体字符 | \mbox{abc}
|
|
混合斜体 (差) | \mbox{if} n \mbox{is even}
|
|
混合斜体 (佳) | \mbox{if }n\mbox{ is even}
|
|
混合斜体(更多: ~ is a non-breaking space, 用 "\ " 强制空格) | \mbox{if}~n\ \mbox{is even}
|
颜色
公式可以有颜色:
{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
所有的已命名颜色可以在这里(已存档)找到。
如果需要对公式进行标识,不要仅仅使用颜色。黑白打印后就看不出颜色了,而且有人可能是色盲。另见。
格式问题
空格
注意TeX自动处理大多数空格,但有时你可能需要手动控制。
功能 | 语法 | 效果 |
---|---|---|
double quad space | a \qquad b
|
|
quad space | a \quad b
|
|
文本空間 | a\ b
|
|
沒有PNG轉換的文字空間 | a \mbox{ } b
|
|
large space | a\;b
|
|
medium space | a\>b
|
[not supported] |
small space | a\,b
|
|
no space | ab
|
|
small negative space | a\!b
|
自動間距可能會在很長的表達式中被破壞(因為它們在TeX中產生一個過滿的hbox):
<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math>
這可以透過在整個表達式兩測放置一對大括弧{}來補救:
<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math>
Empty horizontal or vertical spacing
The phantom
commands create empty horizontal and/or vertical space the same height and/or width of the argument.
特性 | 語法 | 效果 |
---|---|---|
Empty horizontal and vertical spacing | \Gamma^{\phantom{i}j}_{i\phantom{j}k}
|
|
Empty vertical spacing | -e\sqrt{\vphantom{p'}p},\; -e'\sqrt{p'},\; \ldots
|
|
Empty horizontal spacing | \int u^2\,du=\underline{\hphantom{(2/3)u^3+C}}
|
与正常文本流对齐
由于默认css
img.tex { vertical-align: middle; }
像这样的行内表达式应该效果不错。
If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math>
and play with the vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
化学
有兩種方法可以呈現化學方程式中使用的化學和式:
<math chem>
<chem>
<chem>X</chem>
是 <math chem>\ce{X}</math>
的縮寫
(其中 X
是化學總和式)
根據mathjax documentation,技術上來說<math chem>
是一個啟用了擴展mhchem
的math
標籤。
請注意,命令 cee
和cf
處於禁用狀態,因為它們在 mhchem LaTeX package documentation軟體包文檔中被標記為已棄用。
If the formula reaches a certain "complexity", spaces might be ignored (<chem>A + B</chem>
might be rendered as if it were <chem>A+B</chem>
with a positive charge). In that case, write <chem>A{} + B</chem>
(and not <chem>{A} + {B}</chem>
as was previously suggested). This will allow auto-cleaning of formulae once the bug will be fixed and/or a newer mhchem
version will be used.
参见下面的例子。
示例
化学
<chem>C6H5-CHO</chem>
<chem>\mathit{A} ->[\ce{+H2O}] \mathit{B}</chem>
<math chem>A \ce{->[\ce{+H2O}]} B</math>
<chem>SO4^2- + Ba^2+ -> BaSO4 v</chem>
<chem>H2NCO2- + H2O <=> NH4+ + CO3^2-</chem>
<chem>H2O</chem>
<chem>Sb2O3</chem>
<chem>H+</chem>
<chem>CrO4^2-</chem>
<chem>AgCl2-</chem>
<chem>[AgCl2]-</chem>
<chem>Y^{99}+</chem>
<chem>Y^{99+}</chem>
<chem>H2_{(aq)}</chem>
<chem>NO3-</chem>
<chem>(NH4)2S</chem>
二次多项式
<math>ax^2 + bx + c = 0</math>
二次多项式(强制PNG渲染)
<math>ax^2 + bx + c = 0\,</math>
二次公式
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
大括号和分数
<math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
<math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
积分
<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
求和
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}</math>
微分方程
<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
复数
<math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
极限
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
积分方程
<math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
示例
<math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
延續和案例
<math> f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases} </math>
前綴下標
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!}</math>
分數和小分數
<math> \frac {a}{b}\ \tfrac {a}{b} </math>
漏洞反馈
Bug reports and feature requests should be reported on Phabricator with the tag Math.
參見
- Comparison between ParserFunctions syntax and TeX syntax
- Typesetting of mathematical formulas
- Score — extension for music markup
- Table of mathematical symbols
- mw:Extension:Blahtex, or blahtex: a LaTeX to MathML converter for Wikipedia
- General help for editing a Wiki page
- Mimetex alternative for another way to display mathematics using Mimetex.cgi
外部链接
- A LaTeX tutorial
- LaTeX, A Short Course: Typesetting Mathematics
- A paper introducing TeX—see page 39 onwards for a good introduction to the maths side of things.
- A paper introducing LaTeX—skip to page 49 for the math section. See page 63 for a complete reference list of symbols included in LaTeX and AMS-LaTeX.
- The Comprehensive LaTeX Symbol List
- Comprehensive List of Mathematical Symbols
- AMS-LaTeX guide
- A set of public domain fixed-size math symbol bitmaps
- MathML: A product of the W3C Math working group, is a low-level specification for describing mathematics as a basis for machine to machine communication.