Help:Отображение формул
Эта страница устарела. |
The Math extension uses a subset of TeX markup, including some extensions from LaTeX and AMS-LaTeX, to display mathematical formulas. It either generates SVG, MathML markup, or uses MathJax to render math on the client side, depending on user preferences and the complexity of the expression.
MathML and MathJax are planned to be used more in the future, with the SVG images becoming deprecated.
More precisely, MediaWiki filters the markup through Texvc, which in turn passes the commands to TeX for the actual rendering. Thus, only a limited part of the full TeX language is supported; see below for details.
Синтаксис
Traditionally, math markup goes inside the XML-style tag math
: <math>...</math>
.
As with all XML-style tags, one can use the function #tag: {{#tag:math|...}}
; this is more versatile: the wikitext at the dots is first expanded before interpreting the result as TeX code. Thus it can contain parameters, variables, parser functions and templates. Note however that with this syntax double braces in the TeX code must have a space in between, to avoid confusion with their use in template calls etc. Also, to produce the character "|" inside the TeX code, use {{!}}.
В TeX, как и в HTML, дополнительные пробелы и переводы строки игнорируются.
Отображение
The alt text of the images, which is displayed to visually impaired and other readers who cannot see the images, and is also used when the text is selected and copied, is equivalent to the TeX code that produced the image.
В отличие от имён функций и операторов, как это принято в математике для переменных, буквы отображаются курсивом; цифры - нет. Для прочего текста, чтобы избежать курсивного отображения, используйте \text
, \mbox
или \mathrm
. Вы также можете задавать новые имена для функций, используя \operatorname{...}
. Например, <math>\text{abc}</math>
даёт . Это не работает для спецсимволов, которые игнорируются, если только всё выражение <math> не отображается в HTML:
Специальные символы
Следующие символы являются зарезервированными, а также имеют специальное назначение в LaTeX или недоступны во всех шрифтах.
# $ % ^ & _ { } ~ \
Некоторые из них могут быть введены, используя обратный слеш:
<math>\# \$ \% \& \_ \{ \} </math>
→
У других же есть специальные названия:
<math> \hat{} \quad \tilde{} \quad \backslash </math>
→
<span id="TeX_and_HTML">
TeX и HTML
Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML (see help about special characters).
TeX-синтаксис (преобразование в PNG) | Отображение в TeX | HTML-синтаксис | HTML-отображение |
---|---|---|---|
<math>\alpha</math>
|
{{math|<var>α</var>}}
|
α | |
<math> f(x) = x^2\,</math>
|
{{math|''f''(<var>x</var>) {{=}} <var>x</var><sup>2</sup>}}
|
f(x) = x2 | |
<math>\sqrt{2}</math>
|
{{math|{{radical|2}}}}
|
√2 | |
<math>\sqrt{1-e^2}</math>
|
{{math|{{radical|1 − ''e''²}}}}
|
√1 − e² |
The codes on the left produce the symbols on the right, but the latter can also be put directly in the wikitext, except for ‘=’.
Синтаксис | Отображение |
---|---|
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
∫ ∑ ∏ √ − ± &infty; ≈ ∝ {{=}} ≡ ≠ ≤ ≥ × ⋅ ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
∫ ∑ ∏ √ − ± ∞ ≈ ∝ = ≡ ≠ ≤ ≥ × ⋅ ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
Both HTML and TeX have advantages in some situations.
Преимущества HTML
- Formulas in HTML behave more like regular text.
- The formula’s background and font size match the rest of HTML contents (this can be fixed on TeX formulas by using the commands
\pagecolor
and\definecolor
) and the appearance respects CSS and browser settings while the typeface is conveniently altered to help you identify formulae.
- Formulae typeset with HTML code will be accessible to client-side script links (a.k.a. scriptlets).
- The display of a formula entered using mathematical templates can be conveniently altered by modifying the templates involved; this modification will affect all relevant formulae without any manual intervention.
- The HTML code, if entered diligently, will contain all semantic information to transform the equation back to TeX or any other code as needed. It can even contain differences TeX does not normally catch, e.g.
{{math|''i''}}
for the imaginary unit and{{math|<var>i</var>}}
for an arbitrary index variable.
- Formulae using HTML code will render as sharp as possible no matter what device is used to render them.
<span id="Pros_of_TeX">
Преимущества TeX
- TeX is semantically more precise than HTML.
- In TeX, "
<math>x</math>
" means "mathematical variable ", whereas in HTML "x
" is generic and somewhat ambiguous.
- In TeX, "
- On the other hand, if you encode the same formula as "
{{math|<var>x</var>}}
", you get the same visual result x and no information is lost. This requires diligence and more typing that could make the formula harder to understand as you type it.
- On the other hand, if you encode the same formula as "
- One consequence of point 1 is that TeX code can be transformed into HTML, but not vice-versa (unless your wikitext follows the style of point 1.2). This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX.
- Another consequence of point 1 is that TeX can be converted to MathML (e.g. by MathJax) for browsers which support it, thus keeping its semantics and allowing the rendering to be better suited for the reader’s graphic device.
- TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers writing in English. It is easier to persuade them to contribute if they can write in TeX.
- TeX has been specifically designed for typesetting formulae, so input is easier and more natural if you are accustomed to it, and output is more aesthetically pleasing if you focus on a single formula rather than on the whole containing page.
- Once a formula is done correctly in TeX, it will render reliably, whereas the success of HTML formulae is somewhat dependent on browsers or versions of browsers. Another aspect of this dependency is fonts: the serif font used for rendering formulae is browser-dependent and it may be missing some important glyphs. While the browser generally capable to substitute a matching glyph from a different font family, it need not be the case for combined glyphs (compare ‘ a̅ ’ and ‘ a̅ ’).
- When writing in TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the software. This does not hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor’s intentions on a different browser.
- TeX formulae, by default, render larger and are usually more readable than HTML formulae and are not dependent on client-side browser resources, such as fonts, and so the results are more reliably WYSIWYG.
- While TeX does not assist you in finding HTML codes or Unicode values (which you can obtain by viewing the HTML source in your browser), cutting and pasting from a TeX PNG in Wikipedia into simple text will return the LaTeX source.
In some cases it may be the best choice to use neither TeX nor the html-substitutes, but instead the simple ASCII symbols of a standard keyboard (see below, for an example).
Функции, знаки, специальные символы
Ударения/диакритические знаки
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
|
|
\check{a} \bar{a} \ddot{a} \dot{a}
|
Стандартные функции
\sin a \cos b \tan c
|
|
\sec d \csc e \cot f
|
|
\arcsin h \arccos i \arctan j
|
|
\sinh k \cosh l \tanh m \coth n
|
|
\operatorname{sh}o\,\operatorname{ch}p\,\operatorname{th}q
|
|
\operatorname{arsinh}r\,\operatorname{arcosh}s\,\operatorname{artanh}t
|
|
\lim u \limsup v \liminf w \min x \max y
|
|
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g
|
|
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
|
Модульная арифметика
s_k \equiv 0 \pmod{m}
|
|
a\,\bmod\,b
|
Производные
\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}
|
Множества
\forall \exists \empty \emptyset \varnothing
|
|
\in \ni \not\in \notin \not\ni \subset \subseteq \supset \supseteq
|
|
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
|
|
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
|
Операторы
+ \oplus \bigoplus \pm \mp -
|
|
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
|
|
\star * / \div \frac{1}{2}
|
Логика
\land (or \and) \wedge \bigwedge \bar{q} \to p
|
|
\lor \vee \bigvee \lnot \neg q \And
|
Корень
\sqrt{2} \sqrt[n]{x}
|
Отношения
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}
|
|
< \le \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
|
|
\lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox
|
Геометрия
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
|
Стрелки
\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
|
|
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow (or \impliedby) \Longrightarrow (or \implies) \Longleftrightarrow (or \iff)
|
|
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
|
|
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
|
|
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
|
|
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
|
|
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
|
Особые
\And \eth \S \P \% \dagger \ddagger \ldots \cdots \colon
|
|
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
|
|
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
|
|
\ell \mho \Finv \Re \Im \wp \complement
|
|
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
|
Неотсортированные (новое)
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
|
|
\square \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
|
|
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
|
|
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
|
|
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
|
|
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
|
|
\Vvdash \bumpeq \Bumpeq \eqsim \gtrdot
|
|
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
|
|
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \between \shortparallel \pitchfork
|
|
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
|
|
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
|
|
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
|
|
\subsetneq
|
|
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
|
|
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
|
|
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
|
|
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
|
|
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
|
|
\dashv \asymp \doteq \parallel
|
|
\ulcorner \urcorner \llcorner \lrcorner
|
|
\Coppa\coppa\Digamma\Koppa\koppa\Sampi\sampi\Stigma\stigma\varstigma
|
Длинные выражения
Индексы, интегралы
Функция | Синтаксис | Как это отображается | |
---|---|---|---|
Superscript | a^2 |
||
Subscript | a_2 |
||
Группировка | a^{2+2} |
||
a_{i,j} |
|||
Комбинирование верхнего и нижнего индексов с и без горизонтального разделения | x_2^3 |
||
{x_2}^3 |
|||
Super super | 10^{10^{8}} |
||
Preceding and/or Additional sub & super | _nP_k |
||
\sideset{_1^2}{_3^4}\prod_a^b |
|||
{}_1^2\!\Omega_3^4 |
|||
Stacking | \overset{\alpha}{\omega} |
||
\underset{\alpha}{\omega} |
|||
\overset{\alpha}{\underset{\gamma}{\omega}} |
|||
\stackrel{\alpha}{\omega} |
|||
Производные | x', y'', f', f'' |
||
x^\prime, y^{\prime\prime} |
|||
Производные-точки | \dot{x}, \ddot{x} |
||
Подчёркивания, надчёркивания, векторы | \hat a \ \bar b \ \vec c |
||
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
|||
\overline{g h i} \ \underline{j k l} |
|||
\not 1 \ \cancel{123} |
|||
Стрелки | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
||
Overbraces | \overbrace{ 1+2+\cdots+100 }^{\text{sum}\,=\,5050} |
||
Underbraces | \underbrace{ a+b+\cdots+z }_{26\text{ terms}} |
||
Сумма | \sum_{k=1}^N k^2 |
||
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
||
Произведение | \prod_{i=1}^N x_i |
||
Произведение (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
||
Копроизведение | \coprod_{i=1}^N x_i |
||
Копроизведение (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
||
Предел | \lim_{n \to \infty}x_n |
||
Предел (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
||
Интеграл | \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx |
||
Интеграл (другая запись пределов) | \int_{1}^{3}\frac{e^3/x}{x^2}\, dx |
||
Integral (force \textstyle ) |
\textstyle \int\limits_{-N}^{N} e^x\, dx |
||
Интеграл (force \textstyle , alternate limits style) |
\textstyle \int_{-N}^{N} e^x\, dx |
||
Двойной интеграл | \iint\limits_D \, dx\,dy |
||
Тройной интеграл | \iiint\limits_E \, dx\,dy\,dz |
||
Четверной интеграл | \iiiint\limits_F \, dx\,dy\,dz\,dt |
||
Line or path integral | \int_C x^3\, dx + 4y^2\, dy |
||
Closed line or path integral | \oint_C x^3\, dx + 4y^2\, dy |
||
Пересечения | \bigcap_1^n p |
||
Объединения | \bigcup_1^k p |
Дроби, матрицы
Функция | Синтаксис | Как это отображается |
---|---|---|
Дроби | \frac{1}{2}=0.5
|
|
Маленькие дроби ("текстовый стиль") | \tfrac{1}{2} = 0.5
|
|
Большие дроби ("display style") | \dfrac{k}{k-1} = 0.5
|
|
Смесь больших и маленьких дробей | \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n
|
|
Многоуровневые дроби (обратите внимание на разницу форматирования) | \cfrac{2}{ c + \cfrac{2}{ d + \cfrac{1}{2} } } = a \qquad \dfrac{2}{ c + \dfrac{2}{ d + \dfrac{1}{2} } } = a |
|
Биномиальные коэффициенты | \binom{n}{k}
|
|
Маленькие биномиальные коэффициенты ("текстовый стиль") | \tbinom{n}{k}
|
|
Большие биномиальные коэффициенты ("display style") | \dbinom{n}{k}
|
|
Матрицы | \begin{matrix} x & y \\ z & v \end{matrix} |
|
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
||
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
||
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
||
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
||
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
||
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
||
Массивы | \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0 \end{array} |
|
Ветвления | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
|
Система уравнений | \begin{cases} 3x + 5y + z &= 1 \\ 7x - 2y + 4z &= 2 \\ -6x + 3y + 2z &= 3 \end{cases} |
|
Breaking up a long expression so it wraps when necessary | <math>f(x) = \sum_{n=0}^\infty a_n x^n</math> <math>= a_0 + a_1x + a_2x^2 + \cdots</math> |
|
Многострочные равенства | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \end{align} |
|
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \end{alignat} |
||
Многострочные равенства с указанием выравнивания (left, center, right) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
|
\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
Растягивание больших выражений, скобок
Функция | Синтаксис | Как это отображается |
---|---|---|
Плохо | ( \frac{1}{2} )
|
|
Хорошо | \left ( \frac{1}{2} \right )
|
Вы можете использовать различные ограничители с \left
и \right
:
Функция | Синтаксис | Как это отображается |
---|---|---|
Круглые скобки | \left ( \frac{a}{b} \right )
|
|
Квадратные скобки | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
|
|
Фигурные скобки (обратите внимание на обратный слеш перед скобками в коде) | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
|
|
Угловые скобки | \left \langle \frac{a}{b} \right \rangle
|
|
Bars and double bars (note: "bars" provide the absolute value function) | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
|
|
Floor and ceiling functions: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
|
|
Slashes and backslashes | \left / \frac{a}{b} \right \backslash
|
|
Up, down and up-down arrows | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
|
|
Delimiters can be mixed, as long as \left and \right are both used
|
\left [ 0,1 \right ) \left \langle \psi \right |
|
|
Use \left. or \right. if you don't want a delimiter to appear:
|
\left . \frac{A}{B} \right \} \to X
|
|
Size of the delimiters | \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]
|
|
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
|
||
\big| \Big| \bigg| \Bigg| \dots \Bigg\| \bigg\| \Big\| \big\|
|
||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
|
||
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
|
||
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
|
||
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash
|
Alphabets and typefaces
Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.
Греческий алфавит | |
---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
|
|
\Eta \Theta \Iota \Kappa \Lambda \Mu
|
|
\Nu \Xi \Omicron \Pi \Rho \Sigma \Tau
|
|
\Upsilon \Phi \Chi \Psi \Omega
|
|
\alpha \beta \gamma \delta \epsilon \zeta
|
|
\eta \theta \iota \kappa \lambda \mu
|
|
\nu \xi \omicron \pi \rho \sigma \tau
|
|
\upsilon \phi \chi \psi \omega
|
|
\varepsilon \digamma \vartheta \varkappa
|
|
\varpi \varrho \varsigma \varphi
|
|
Blackboard Bold/Scripts | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
|
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
|
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
|
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
|
\C \N \Q \R \Z
|
|
boldface (vectors) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
|
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
|
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
|
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
|
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
|
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
|
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
|
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
|
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
|
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
|
Boldface (greek) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
|
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
|
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Omicron} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
|
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
|
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
|
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
|
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\omicron} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
|
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
|
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
|
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
|
Курсив | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
|
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
|
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
|
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
|
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
|
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
|
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
|
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
|
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
|
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
|
Roman typeface | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
|
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
|
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
|
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
|
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
|
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
|
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
|
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
|
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
|
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
|
Fraktur typeface | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
|
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
|
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
|
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
|
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
|
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
|
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
|
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
|
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
|
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
|
Calligraphy/Script | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
|
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
|
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
|
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
|
Hebrew | |
\aleph \beth \gimel \daleth
|
Feature | Синтаксис | Как это отображается |
---|---|---|
non-italicised characters | \mbox{abc}
|
|
mixed italics (bad) | \mbox{if} n \mbox{is even}
|
|
mixed italics (good) | \mbox{if }n\mbox{ is even}
|
|
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | \mbox{if}~n\ \mbox{is even}
|
Цвет
Уравнения могу использовать цвета:
{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
См. здесь названия всех цветов, поддерживаемых LaTeX.
Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people.
Formatting issues
Spacing
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
Feature | Синтаксис | Как это отображается |
---|---|---|
double quad space | a \qquad b
|
|
quad space | a \quad b
|
|
text space | a\ b
|
|
text space without PNG conversion | a \mbox{ } b
|
|
большой пробел | a\;b
|
|
средний пробел | a\>b
|
[not supported] |
маленький пробел | a\,b
|
|
no space | ab
|
|
small negative space | a\!b
|
Automatic spacing may be broken in very long expressions (because they produce an overfull hbox in TeX):
<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math>
This can be remedied by putting a pair of braces { } around the whole expression:
<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math>
Empty horizontal or vertical spacing
The phantom
commands create empty horizontal and/or vertical space the same height and/or width of the argument.
Feature | Syntax | How it looks rendered |
---|---|---|
Empty horizontal and vertical spacing | \Gamma^{\phantom{i}j}_{i\phantom{j}k}
|
|
Empty vertical spacing | -e\sqrt{\vphantom{p'}p},\; -e'\sqrt{p'},\; \ldots
|
|
Empty horizontal spacing | \int u^2\,du=\underline{\hphantom{(2/3)u^3+C}}
|
Alignment with normal text flow
Due to the default css
img.tex { vertical-align: middle; }
строчное выражение такое, как like должно выглядеть хорошо.
If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math>
and play with the vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
Химия
There are two ways to render chemical sum formulae as used in chemical equations:
<math chem>
<chem>
<chem>X</chem>
is short for <math chem>\ce{X}</math>
.
(where X
is a chemical sum formula)
Technically, <math chem>
is a math
tag with the extension mhchem
enabled, according to the mathjax documentation.
Note, that the commands \cee
and \cf
are disabled, because they are marked as deprecated in the mhchem LaTeX package documentation.
If the formula reaches a certain "complexity", spaces might be ignored (<chem>A + B</chem>
might be rendered as if it were <chem>A+B</chem>
with a positive charge). In that case, write <chem>A{} + B</chem>
(and not <chem>{A} + {B}</chem>
as was previously suggested). This will allow auto-cleaning of formulae once the bug will be fixed and/or a newer mhchem
version will be used.
См. примеры ниже.
Примеры
Химия
<chem>C6H5-CHO</chem>
<chem>\mathit{A} ->[\ce{+H2O}] \mathit{B}</chem>
<math chem>A \ce{->[\ce{+H2O}]} B</math>
<chem>SO4^2- + Ba^2+ -> BaSO4 v</chem>
<chem>H2NCO2- + H2O <=> NH4+ + CO3^2-</chem>
<chem>H2O</chem>
<chem>Sb2O3</chem>
<chem>H+</chem>
<chem>CrO4^2-</chem>
<chem>AgCl2-</chem>
<chem>[AgCl2]-</chem>
<chem>Y^{99}+</chem>
<chem>Y^{99+}</chem>
<chem>H2_{(aq)}</chem>
<chem>NO3-</chem>
<chem>(NH4)2S</chem>
Квадратный многочлен
<math>ax^2 + bx + c = 0</math>
Quadratic Polynomial (Force PNG Rendering)
<math>ax^2 + bx + c = 0\,</math>
Quadratic Formula
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
Tall Parentheses and Fractions
<math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
<math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
Интегралы
<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
Summation
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}</math>
Дифференциальное уравнение
<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
Комплексные числа
<math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
Пределы
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
Интегральное уравнение
<math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
Пример
<math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
Continuation and cases
<math> f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases} </math>
Prefixed subscript
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!}</math>
Fraction and small fraction
<math> \frac {a}{b}\ \tfrac {a}{b} </math>
Bug reports
Bug reports and feature requests should be reported on Phabricator with the tag Math.
См. также
Внешние ссылки
- A LaTeX tutorial
- LaTeX, A Short Course: Typesetting Mathematics
- A paper introducing TeX—see page 39 onwards for a good introduction to the maths side of things.
- A paper introducing LaTeX—skip to page 49 for the math section. See page 63 for a complete reference list of symbols included in LaTeX and AMS-LaTeX.
- The Comprehensive LaTeX Symbol List
- Comprehensive List of Mathematical Symbols
- AMS-LaTeX guide
- A set of public domain fixed-size math symbol bitmaps
- MathML: A product of the W3C Math working group, is a low-level specification for describing mathematics as a basis for machine to machine communication.