النمو/اليوم الأول المعدّل/المهام المهيكلة/تحرير النسخ

This page is a translated version of the page Growth/Personalized first day/Structured tasks/Copyedit and the translation is 53% complete.
Other languages:
مزايا النموّ استخدام الأدوات تحديثات المشاريع الفريق
تصفح كل المحتوى
اكتشاف المزايا الموجودة صفحات المساعدة وموارد خاصة بالمزايا آخر أخبار المشروع المبادرات الحالية واستراتيجيات التفكير حول إنشاء المزايا أو خلق الموارد. من نحن

مساعدة عامة وموارد

موارد المساعدة للمرشدين موارد للمجتمعات

تُترجم هذه الصفحة العمل على المهمّة المهيكلة «تحرير النسخ»، التي هي نوع من المهام المهيكلة التي ربما سيُوفرها فريق النمو عبر لوحة المستخدمين الخاصة بالوافدين الجدد. تحتوي الصفحة على أهداف رئيسة وتصاميم وأسئلة مفتوحة وقرارات. سيتم نشر معظم الأخبار الخاصة بتدرّج العمل في الصفحة العامة لـأخبار فريق النمو، مع نشر بعض الأخبار الهامّة أو المفصّلة هنا.

الوضع الحالي

  • 2021-07-19: إنشاء صفحة المشروع والشروع في البحوث الخلفيّة.
  • Next: مواصلة البحوث الخلفيّة

ملخص

الهدف من المهام المهيكلة هو تفصيل مهام التعديل إلى مسارات عمل خطوة بخطوة من شأنها أن تناسب الوافدين الجدد وأن تناسب الأجهزة النقالة. يعتقد فريق النموّ أنّ إدراج هذه الأنماط الجديدة من مسارات التعديل من شأنه أن يتيح لعدد أكبر من المستخدمين الجدد أن يبدؤوا في بالمساهمة في ويكيبيديا، بعضهم سيتعلّم كيفية القيام بتعديلات مهمّة ويكون فاعلا في مجتمعاتهم. بعد مناقشات داخل المجتمعات حول المهام المهيكلة، قرّرنا إنشاء المهمّة المهيكلة الأولى: «إضافة رابط».

حتى عندما قمنا ببناء هذه المهمة الأولى، كنا نفكر في ماهية المهام المهيكلة اللاحقة؛ نريد أن يكون لدى الوافدين الجدد أنواع متعددة من المهام للاختيار من بينها حتى يتمكنوا من العثور على الأنواع التي يرغبون في القيام بها، ويتمكّنوا من المرور إلى تعديلات أصعب أثناء زيادة تعلّمهم. المهمّة الثانية التي بدأنا العمل عليها كانت «إضافة صورة». إلاّ أنّه في نقاشاتنا الأولى مع المجتمعات حول فكرة المهام المهيكلة، حبّذت هذه المجتمعات بصفة خاصة مهمّة من نوع تحرير النسخ -- كلّ ما يرتبط باللغة، والرّسم، والنحوّ، وقواعد الإملاء والتنقيط، إلخ. هذه ملاحظاتنا الأولى في أثناء اطلاعنا على النقاشات مع أفراد المجتمعات.

نعلم أنه يوجد الكثير من الأسئلة حول طرق القيام هذا العمل، الكثير من الأسباب المحتملة يمكن أن تؤدّي إلى منحى خاطئ: ماهي أنواع تحرير النسخ التي نتحدّث عنها؟ هل فقط الرّسم، أم شيء آخر؟ هل توجد خوارزميّة، تستطيع العمل على مختلف اللغات؟ هذه الأسئلة هي مطروحة لأمل الحصول على أكثر عدد ممكن من الملاحظات من قبل أفراد المجتمعات وعلى محادثات جارية عندما نقرر كيفية معالجة الأمور.

البحث في الخلفية

مخطط البحث

الأهداف

  • We want to understand the types of copyediting tasks it might be possible to assist with algorithms.
  • We want to use an algorithm that can suggest tasks for a type of copyediting in articles across different languages.
  • We want to know how good the algorithm works (e.g. know which model works best from a set of existing models).

Literature review

  • What different subtasks are considered copyediting?
  • Identify different aspects of copyediting across the spectrum: typo/spelling to grammar to style/tone
  • What are existing approaches to copyediting in Wikipedia?
  • What are existing public commonly-used tools for spell-checking/grammar etc such as hunspell, LanguageTool, or Grammarly?
    • We know that our communities prefer transparent algorithms, so it is easy for everyone to understand where suggestions come from.
    • What are available models from research in NLP and ML, for example for the task of Grammatical Error Correction.

Defining the task

  • Which aspect of copyediting will we model for the structured task?
  • Type of task: spelling, grammar, tone/style
    • For example: What can browser-spellcheckers do?
  • Granularity -- highlighting task on the level of: article, section, paragraph, sentence, word, sub-word
    • Depends on the task
  • Surface known items (e.g. from templates) or predict new ones?
  • Only suggest that improvement is needed, or suggest how to improve?
    • Suggesting improvement is easier for simpler tasks.
    • Simply highlighting that work is needed is easier for more complex tasks (e.g. style or tone)
  • Language support: how many languages do we aim to support?
    • Include Spanish and Portuguese as target languages alongside Arabic, Vietnamese, Bengali, Czech.
    • We ideally want to cover all languages, but will realistically need to evaluate solutions based on the depth of their language coverage.

Building a dataset for evaluation