ORES

This page is a translated version of the page ORES and the translation is 31% complete.
Other languages:
Bahasa Indonesia • ‎English • ‎Esperanto • ‎Nederlands • ‎Türkçe • ‎español • ‎français • ‎galego • ‎português do Brasil • ‎suomi • ‎svenska • ‎čeština • ‎русский • ‎українська • ‎中文 • ‎日本語 • ‎한국어

ORES (/ɔɹz/) - сервис оценки правок [1]. Содержит в себе веб-сервис и API, которые предоставляют машинное обучение как сервис для Wikimedia проектов управляемые Scoring Platform team. Система разработана для помощи в автоматизации критичной wiki-работы. Например, обнаружение вандализма и удаление его. На данный момент есть два основных типа оценки, которые ORES создает: "качество правки" и "качество статьи".

Сам по себе ORES не предоставляет способа использовать такие оценки качества. Если вы хотите использовать оценки ORES, просмотрите список инструментов, которые используют оценки ORES. Если ORES ещё не поддерживает вашу wiki, смотрите инструкции для запроса поддержки.

Ищите ответы на свои вопросы по ORES? Проверьте ORES FAQ.

Качество правки

 
Поток правок Диаграмма показывает правки неизвестного качества до введения ORES, "хорошие", "требующие проверки" и "вредные правки" после введения ORES.

Одной из самых серьезных проблем, связанных с открытыми проектами Викимедиа, является обзор потенциально разрушительных вкладов («правок»). Также необходимо определить добросовестных участников (которые могут непреднамеренно нанести ущерб) и предложить им поддержку. Эти модели предназначены для упрощения фильтрации через канал :Служебная:СвежиеПравки. Мы предлагаем два уровня поддержки моделей прогнозирования качества :редактирования:базовый и расширенный.

Базовая поддержка

Предполагая, что наиболее разрушительные правки будут возвращены, а правки, которые не повреждают, не будут возвращены, мы можем построить, используя историю правок (и обращенных правок) из вики. Эта модель проста в настройке, но она страдает от проблемы, заключающейся в том, что многие изменения отменяются по причинам, отличным от ущерба и вандализма. Чтобы помочь этому, мы создаем модель, основанную на плохих словах.

  • возвращены – предсказывает, суждено ли правке быть мгновенно возвращённой

Усиленная поддержка

Rather than assuming, we can ask editors to train ORES which edits are in-fact damaging and which edits look like they were saved in goodfaith. This requires additional work on the part of volunteers in the community, but it affords a more accurate and nuanced prediction with regards to the quality of an edit. Many tools will only function when advanced support is available for a target wiki.

  • damaging – predicts whether or not an edit causes damage
  • goodfaith – predicts whether an edit was saved in good-faith

Качество статей

 
Таблица качества статей в английской Википедии. Скриншот таблицы по состоянию на декабрь 2014 года, таблица сгенерирована ботом.

Качество статей Википедии важно для её редакторов. Новые страницы должны быть проверены. Проверка отсекает статьи, в которых есть спам, вандализм и нападки. Для остальных статей проверяется их качество, но эти сведения часто бывают устаревшими.

Curation support

The faster that seriously problematic types of draft articles are removed, the better. Curating new page creations can be a lot of work. Like the problem of counter-vandalism in edits, machine predictions can help curators focus on the most problematic new pages first. Based on comments left by admins when they delete pages (see the logging table), we can train a model to predict which pages will need quick deletion. See en:WP:CSD for a list of quick deletion reasons for English Wikipedia. For the English model, we used G3 "vandalism", G10 "attack", and G11 "spam".

  • draftquality – predicts if the article will need to be speedy deleted (spam, vandalism, attack, or OK)

Assessment scale support

For articles that survive the initial curation, some of the large Wikipedias periodically evaluate the quality of articles using a scale that roughly corresponds to the English Wikipedia 1.0 assessment rating scale ("articlequality"). Having these assessments is very useful because it helps us gauge our progress and identify missed opportunities (e.g., popular articles that are low quality). However, keeping these assessments up to date is challenging, so coverage is inconsistent. This is where the articlequality machine learning model comes in handy. By training a model to replicate the article quality assessments that humans perform, we can automatically assess every article and every revision with a computer. This model has been used to help WikiProjects triage re-assessment work and to explore the editing dynamics that lead to article quality improvements.

The articlequality model bases its predictions on structural characteristics of the article. E.g. How many sections are there? Is there an infobox? How many references? And do the references use a {{cite}} template? The articlequality model doesn't evaluate the quality of the writing or whether or not there's a tone problem (e.g. a point of view being pushed). However, many of the structural characteristics of articles seem to correlate strongly with good writing and tone, so the models work very well in practice.

  • articlequality – predicts the (Wikipedia 1.0-like) assessment class of an article or draft

Topic routing

 
Topic Cross-walk. A visualization of the cross-wiki labeling process is presented. English Wikipedia's WikiProjects tag articles by topical interest. WikiProjects are organized into a taxonomy of topic labels. The topic labels are applied to articles on other wikis via Wikidata sitelinks.

ORES' article topic model applies an intuitive top-down taxonomy to any article in Wikipedia -- even new article drafts. This topic routing is useful for curating new articles, building work lists, forming new WikiProjects, and analyzing coverage gaps.

ORES topic models are trained using word embeddings of the actual content. For each language, a language-specific embedding is learned and applied natively. Since this modeling strategy depends on the topic of the article, topic predictions may differ between languages depending on the topics present in the text of the article.

Curation support

 
New article routing. A diagram maps the flow of new articles in Wikipedia with the 'draftquality' and 'articletopic' ORES models used for routing.

The biggest difficulty with reviewing new articles is finding someone familiar with the subject matter to judge notability, relevance, and accuracy. Our drafttopic model is designed to route newly created articles based on their apparent topical nature to interested reviewers. The model is trained and tested against the first revision of articles and is thus suitable to use on new article drafts.

  • drafttopic – predicts the topic of an a new article draft

Topic interest mapping

 
Article tagging example (Ann Bishop). Ann Bishop is tagged by WikiProjects East Anglia, Women scientists, Women's history, and Biography. The topic taxonomy translation and predictions are presented. Note that the predictions include more relevant topic information than the taxonomy links.

The topical relatedness of articles is an important concept for the organization of work in Wikipedia. Topical working groups have become a common strategy for managing content production and patrolling in Wikipedia. Yet a high-level hierarchy is not available or query-able for many reasons. The result is that anyone looking to organize around a topic or make a work-list has to do substantial manual work to identify the relevant articles. With our articletopic model, these queries can be done automatically.

  • articletopic – предсказывает тему статьи (more details )

Support table

The ORES support table reports the status of ORES support by wiki and model available. If you don't see your wiki listed, or support for the model you'd like to use, you can request support.

Использование API

ORES offers a Restful API service for dynamically retrieving scoring information about revisions. See https://ores.wikimedia.org for more information on how to use the API.

If you're querying the service about a large number of revisions, it's recommended to batch no more than 50 revisions within a given request as described below. It's acceptable to use up to 4 parallel requests. Please do not exceed these limits or ORES can become unstable. For even larger number of queries, you can run ORES locally

Примерный вопрос: http://ores.wmflabs.org/v3/scores/enwiki/?models=draftquality|wp10&revids=34854345|485104318

Результат 
{
  "enwiki": {
    "models": {
      "draftquality": {
        "version": "0.0.1"
      },
      "wp10": {
        "version": "0.5.0"
      }
    },
    "scores": {
      "34854345": {
        "draftquality": {
          "score": {
            "prediction": "OK",
            "probability": {
              "OK": 0.7013632376824356,
              "attack": 0.0033607229172158775,
              "spam": 0.2176404529599271,
              "vandalism": 0.07763558644042126
            }
          }
        },
        "wp10": {
          "score": {
            "prediction": "FA",
            "probability": {
              "B": 0.22222314275400137,
              "C": 0.028102719464462304,
              "FA": 0.7214649122864883,
              "GA": 0.008833476344463836,
              "Start": 0.017699431000825352,
              "Stub": 0.0016763181497590444
            }
          }
        }
      },
      "485104318": {
        "draftquality": {
          "score": {
            "prediction": "OK",
            "probability": {
              "OK": 0.9870402772858909,
              "attack": 0.0006854267347843173,
              "spam": 0.010405615745053554,
              "vandalism": 0.0018686802342713132
            }
          }
        },
        "wp10": {
          "score": {
            "prediction": "Stub",
            "probability": {
              "B": 0.02035853144725939,
              "C": 0.021257471714087376,
              "FA": 0.0018133076388221472,
              "GA": 0.003447287158958823,
              "Start": 0.1470443252839051,
              "Stub": 0.8060790767569672
            }
          }
        }
      }
    }
  }
}


Example query: https://ores.wikimedia.org/v3/scores/wikidatawiki/421063984/damaging

Результат 
{
  "wikidatawiki": {
    "models": {
      "damaging": {
        "version": "0.3.0"
      }
    },
    "scores": {
      "421063984": {
        "damaging": {
          "score": {
            "prediction": false,
            "probability": {
              "false": 0.9947809563336424,
              "true": 0.005219043666357669
            }
          }
        }
      }
    }
  }
}


EventStream usage

The ORES scores are also provided as an EventStream at https://stream.wikimedia.org/v2/stream/revision-score

Локальное использование

To run ORES locally you can install ORES by:

pip install ores # needs to be python3, incompatible with python2

Then you should be able to run it through :

echo -e '{"rev_id": 456789}\n{"rev_id": 3242342}' | ores score_revisions https://ores.wikimedia.org enwiki damaging

You should see output of

Результат 
017-11-22 16:23:53,000 INFO:ores.utilities.score_revisions -- Reading input from <stdin>
2017-11-22 16:23:53,000 INFO:ores.utilities.score_revisions -- Writing output to from <stdout>
{"score": {"damaging": {"score": {"prediction": false, "probability": {"false": 0.9889349126544834, "true": 0.011065087345516589}}}}, "rev_id": 456789}
{"score": {"damaging": {"score": {"prediction": false, "probability": {"false": 0.9830812038318183, "true": 0.016918796168181708}}}}, "rev_id": 3242342}


Сноски

  1. Изначально назывался "Objective Revision Evaluation Service", но полное название на данный момент устарело