<math display="block" forcemathmode="5"> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2y}}</math>
erfc(x)=2π∫x∞e−t2dt=e−x2xπ∑n=0∞(−1)n(2n)!n!(2x)2y